

2.3 Dienstleistungen zwischen Lösungsansatz und fertigem Bauteil

 Matthias Förster Sembach GmbH & Co. KG Lauf a.d. Pegnitz

Die Folien finden Sie ab Seite 149.

Der erste Kontakt

Situation

Eine Neuentwicklung oder bestehende Konstruktion soll ermöglicht bzw. optimiert werden. Bestehende Bauteile oder Werkstoffe erfüllen die gestellten Anforderungen oder Wünsche nicht.

Beständigkeit gegen Alterung, Verschleiß, Temperatur, Isolationswiderstände und/oder Festigkeiten werden gefordert.

Der Gedanke einmal einen neuen Werkstoff zu verwenden, ja mal etwas mit Keramik zu machen, wird gefasst.

Erste Hilfe hierfür kann das Infozentrum für Keramik als Knotenpunkt oder direkt die Anfrage bei einem Hersteller für Keramik sein.

Was erwartet der Kunde?

- 1. Informationen über Möglichkeiten
- 2. Vorschlag für die Erfüllung des Einsatzzweckes
- Stimmendes Preis-Leistungs-Verhältnis für die erwarteten Stückzahlen
- Konstante Qualit\u00e4t der Produkte aus sicherem Prozess
- Verfügbarkeit der Teile in einem vom Kunden definierten Zeitraum

Der Weg

Der prinzipielle Weg dahin ist einfach!

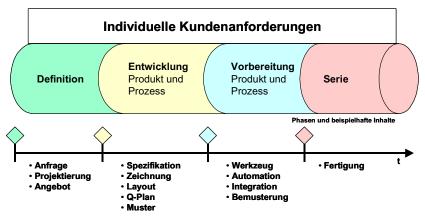


Bild 1: Individuelle Kundenanforderungen

Meist erhält man als Keramikhersteller nur eine Zeichnung des Bauteiles mit der Materialbezeichnung "Keramik" und der zu erwartenden Stückzahl. Hier beginnt dann die sogenannte "Sensibilisierung zur Keramik". In verschiedensten Punkten muss der Kunde vor Machbarkeitsprüfung und Kalkulation beraten werden.

- Werkstoffauswahl
- Geeignetes Fertigungsverfahren
- Festlegung einer optimalen Geometrie
- Diskussion zum Preis-Leistungs-Verhältnis

Die Keramik

Erst die genauen Kenntnisse der Einsatzbedingungen des Bauteiles ermöglichen es dem Keramikhersteller dem Kunden den am besten geeigneten Werkstoff vorzuschlagen.

Hier sind u.a. folgenden Parameter abzuklären:

Temperaturbelastung

- Thermoschockbeständigkeit
- Wärmedehnung
- Wärmeleitfähigkeit
- max. Einsatztemperatur ...

Elektrische Beanspruchung

- Durchschlagsfestigkeit
- Oberflächenwiderstand
- Verlustfaktor
- Permitivität ...

Mechanische Ansprüche

- Dichte
- Tribologie
- Festigkeiten (Biege-, Zug- oder Druckfestigkeiten)
- Härte
- evtl. Lastwechsel

Chemische Umgebung

- Säure- bzw. Laugenbeständigkeit mit Ihren verschieden Variationen
- andere Umwelteinflüsse wie z.B. UV-Beständigkeit

Einführung in die Technische Keramik

Die nachfolgende Tabelle gibt einen kleinen Überblick einiger gängiger Keramiken die in Maschinenbau und Elektroelektrotechnik häufig zum Einsatz kommen.

Ein umfassender Überblick ist im Brevier Technischer Keramik zu finden

Werkstoff			Stealan	Super- pyrostat	Forsterit	Cordierit	Pyrostat
			Magnesium-Silicat			Magnesium- Aluminium-Silicat	
Bezeichn. nach DIN EN 60672			C221	C230	C250	C410	C511
		T			T		
Rohdichte	ρ_{α}	[g/cm ³]	2,7	1,8	2,8	2,1	2,0-2,1
Offene Porosität	Pa	[Vol.%]	0	38	0	0	18 – 24
Wasseraufnahme	Wa	[Gew.%]	0	21	0	0	9 – 12
Biegefestigkeit	$\sigma_{\scriptscriptstyle B}$	[MPa]	140	30	140	60	25
Druckfestigkeit			900	100	900	300	200
E-Modul	E	[GPa]	120			70	
	1		1				1
Wärmeausdehnungs- koeffizient	$lpha_{ m 20^{\circ}C\ bis}$ 600°C	[10 ⁻⁶ K ⁻¹]	7 – 9	8 – 10	10 – 11	2 – 4	4 – 6
Wärmeleitfähigkeit	λ	[W/mK]	2 – 3	1,5 – 2	3 – 4	1,2 – 2,5	1,3 – 1,8
Spezifische Wärme- kapazität	Cp	[J/kgK]	800 – 900	800 – 900	800 – 900	800 – 1200	750 – 850
Durchschlagfestigkeit	Ε _ν	[kV/mm]	20		20	10	
Spezif. Widerstand	ρν 20°C	$[\Omega m]$	1011		1011	1010	
	ρν 600°C		105	105	105	103	103
Dielektrizitätszahl 48 Hz bis 62 Hz	ϵ_{r}		6		7	5	
Dielektr. Verlustfaktor	tanδ (48 – 62Hz)	[10 ⁻³]	1,5		1,5	25	
	tanδ (1MHz)		1,2		0,5	7	

Tabelle 1: Technische Daten von Silicatkeramiken

Werkstoff			A65	A92	A96	A99	M96	M99
			Aluminiumoxid			Magnesiumoxid		
Bezeichnung nach DIN EN 60672			C620	C786	C795	C799	C830	C830
	ı	l	I		T .	T		
Rohdichte	ρ_{α}	[g/cm³]	2,8	3,6	3,7	3,8	2,0-2,3	2,3-2,7
Offene Porosität	Pa	[Vol.%]	0	0	0	0	35 – 45	25 – 39
Wasserauf- nahme	Wa	[Gew.%]	0	0	0	0	16 – 22	9 – 17
Biegefestigkeit	$\sigma_{\scriptscriptstyle B}$	[MPa]	150	250	280	300 – 400	8 – 25	10 – 50
E-Modul	E	[GPa]	150	220	280	300 – 400	90	90
Wärmeaus- dehnungs- koeffizient	α _{20°C bis} 600°C	[10 ⁻⁶ K ⁻¹]	5 – 7	6 – 8	7 – 8	7 – 8	12 – 13	12 – 13
Wärmeleit- fähigkeit	λ	[W/mK]	6 – 8	14 – 24	16 – 28	20 – 30	6 – 10	6 – 10
Spezifische Wärme- kapazität	C _p	[J/kgK]	850 – 1050					
	•		·					
Durchschlag- festigkeit	E _v	[kV/mm]	15	15	15	17		
Spezifischer Widerstand	ρν 20°C	[Ωm]	1011	1012	1012	1012		
	ρν 600°C		104	106	106	106		
Dielektrizitäts- zahl 48 Hz bis 62 Hz	$\epsilon_{ ho}$		8	9	9	9	10	10
Dielektrischer Verlustfaktor	tanδ (48 – 62 Hz)	[10 ⁻³]		0,5	0,5	0,2		
	tanδ (1MHz)			1	1	1		

Tabelle 2: Technische Daten von Oxidkeramiken

Das Fertigungsverfahren

Der ermittelte Werkstoff, die geforderte Stückzahl und der Preis bestimmen dann die Wahl des für dieses Teil geeignete Fertigungsverfahrens.

Die Stückzahl favorisiert meist ein oder mehrere Fertigungsverfahren oder lässt sie von vornherein nicht zu.

Bild 2: Auswahl des Fertigungsverfahrens

All diesen Fertigungsverfahren kann je nach Funktionsanforderung noch eine Nachbearbeitung oder eine Veredelung folgen, wie z.B.:

- Glasieren
- Metallisieren (f
 ür l
 ötf
 ähige Verbindungen)
- Silikonisieren
- Beschichten mit anderen Materialien
- Schleifen
- Läppen
- Polieren

Die Geometrie

Der wichtigste Punkt für die Herstellung des Bauteils ist die gewünschte Geometrie und deren geforderte Genauigkeit. "Geht nicht gibt's nicht – aber alles hat seinen Preis".

Bei der Betrachtung der Machbarkeit eines Bauteiles stoßen wir immer wieder auf für Metall typische Anforderungen.

Wichtig ist es also dem Kunden den Herstellungsprozess der Keramik mit seinen Eigenheiten zu verdeutlichen und bewusst zu machen.

Keramik Metall Pulver Pulver Formgebung Hitze Hitze Werkstoff Werkstoff Formgebung Bauteil Bauteil Schwindung keine bis zu 20 % in der Schwindung da aus Halbzeugen gefertigt Länge

Vergleich Keramik - Metall

Bild 3: Herstellungsprozess von Keramik und Metall

Die Einhaltung von für Metall typische engen Toleranzen hat in der Herstellung des Bauteils meist die Konsequenz der Nachbearbeitung. Dies ist bei Keramikteilen je nach verwendetem Werkstoff nur mit Hilfe von Diamantwerkzeugen möglich und beeinflusst den Bauteilpreis entscheidend.

Zur Optimierung des keramischen Bauteils ist es daher unerlässlich, zwischen Toleranzen für Funktionsflächen und Allgemeintoleranzen zu unterscheiden.

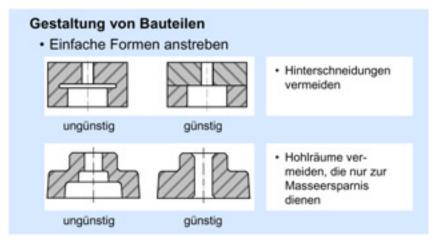
Einführung in die Technische Keramik

Um hier geeignete Lösungen zu finden, die die Bauteilansprüche, -preise und -sicherheit optimieren, sollte die Geometrie nach bestimmten, auf Keramik zugeschnittenen Kriterien festgelegt werden. Wir unterstützen Sie auch hierbei.

Für die Geometrie finden folgende Grundregeln Anwendung:

Grundregel	Konsequenz			
Einfache Formen	Formen dem entsprechenden Urformverfahren anpassen Urform- und Sintervorgang erleichtern Modulbauweise bei komplizierten Formen			
Spannungsspitzen vermeiden	keine plötzlichen Querschnittsveränderung Kerben, Ecken und scharfe Kanten minimieren Kräfte großflächig einleiten			
Zugspannungen minimieren	Vorgabe beanspruchungsgerechter Querschnitte Erzielen von Druckspannungen keramikgerechte Gestaltung der Urkrafteinleitung			
Material- anhäufungen vermeiden	 geringe Wandstärkendifferenzen Querschnittssprünge vermeiden Knotenpunkte auflösen verdichtungsgerecht gestalten 			
Nachbearbeitung minimieren	Grünbearbeitung ist günstiger als Endbearbeitung Kantenrundungen vermeiden Ausbrüche kleine und abgesetzte Bearbeitungsflächen zu lassen			
Beachtung fertigungs- spezifischer Besonderheiten	Entformbarkeit erleichtern günstige Urformverfahren ermöglichen Hinterschneidungen vermeiden			

Tabelle 3: Grundregeln zur Formgebung


Einige Beispiele für eine keramikgerechte Geometrie:

Weitere Vorschläge und Anregungen für die keramikgerechte Gestaltung sind im Brevier der Technischen Keramik beschrieben. (Siehe auch www.keramverband.de/brevier)

Gestaltung von Bauteilen · Nachbearbeitung minimieren Bohrungen, die mit weiteren Bauteilen oder einer Montagevorrichtung in Zusammenhang stehen, müssen so groß bemessen sein, daß die Toleranzen des keramischen Bauteils (DIN 40680; bei Vereinbarung auch kleiner) überbrückt werden kann. ungünstig günstig

Bild 4: Bohrungen in keramischen Bauteilen

Bild 5: Einfache Formen anstreben

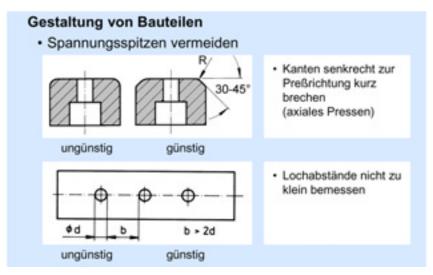


Bild 6: Spannungsspitzen vermeiden (1)

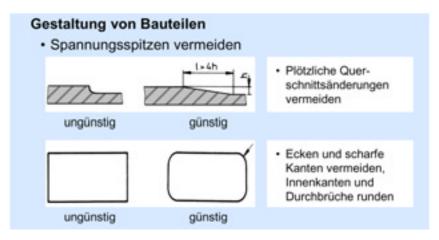


Bild 7: Spannungsspitzen vermeiden (2)

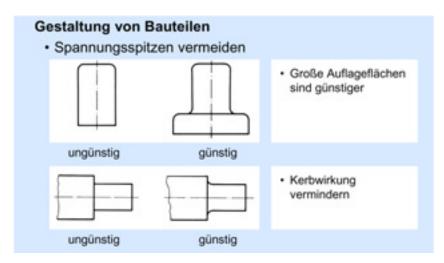


Bild 8: Spannungsspitzen vermeiden (3)

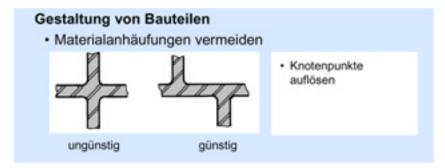


Bild 9: Materialanhäufungen vermeiden

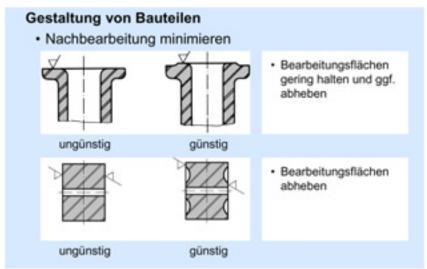


Bild 10: Nachbearbeitung minimieren



Bild 11: Nachbearbeitung minimieren

Wenn all diese Punkte geklärt und eine Lösung für beide Seiten gefunden wurde, kann man erste Bauteile als Prototypen herstellen. Diese werden z.B. aus vorgeformtem Vollmaterial herausgearbeitet und besitzen dann nahezu die Eigenschaften der fertiggepressten Teile. Auch die Herstellung eines Pilotwerkzeuges kann bei verschieden Teilen in Betracht gezogen werden. Damit können dann auch erste Kleinserien gefertigt werden. Die Herstellung im sogenannten Rapidprototyping wie derzeit im Metall- und Kunststoffbau üblich, ist in der Keramik industriell noch nicht möglich.

Wenn die Prototypen erfolgreich getestet sind und der Preis, als weitere Bauteileigenschaften, den Erwartungen des Kunden entspricht, kann der Bau eines Serienwerkzeuges beginnen, z.B. ein Werkzeug zum Trockenpressen.

Wie jedoch meist in der Praxis üblich, sind vor dem Fertigen des Teiles in der Serie einige Optimierungsschleifen zu bewältigen.

Je nach Kundenwunsch erfolgt die Festlegung der Spezifika für die Bemusterung der Teile und des Prozesses nach kundeneigenen Kriterien oder wie in der Automobilbranche üblich nach genormten Kriterien, wie z.B. PPAP.

Ein wichtiger Punkt bei der anfänglichen Serienteilelieferung ist die Sensibilisierung der Wareneingangskontrolle und der Fertigung des Kunden für den neuen etwas anderen Werkstoff Keramik.

Einführung in die Technische Keramik

Wir möchten Ihnen daher mitgeben: Lassen sie sich bei der Einführung eines keramischen Bauteils in Ihr Produkt durch einen Keramikhersteller begleiten und speziell zu folgenden Punkten intensiv beraten zu lassen:

- Werkstoff
- Geometrie
- Toleranzen
- Zeitlicher Ablauf

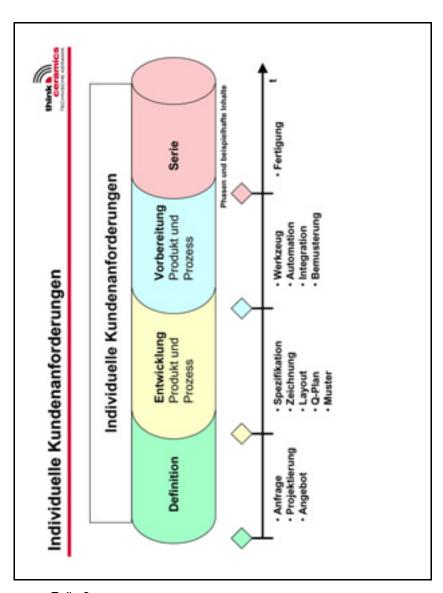
Damit ist dann gewährleistet, dass Sie ein optimales Keramikteil erhalten, auch bezüglich des Preis-Leistung-Verhältnisses.

Die verwendeten Vortragsfolien (Nr. 1 bis 20) finden sich auf den folgenden Seiten.

Einführung

Dienstleistungen zwischen Lösungsansatz und fertigem Bauteil

Matthias Förster Sembach GmbH & Co. KG Lauf a.d. Pegnitz



Was erwartet der Kunde?

- Informationen über Möglichkeiten
- Vorschlag f
 ür die Erf
 üllung des Einsatzzweckes
- Stimmendes Preis Leistungs Verhältnis für die erwarteten Stückzahlen
- Konstante Qualität der Produkte aus sicherem Prozess 4.
- Verfügbarkeit der Teile in einem vom Kunden definierten Zeitraum 5

Folie 3

Klärungen mit dem Kunden

- Stückzah
- Werkstoffauswahl
- Geeignetes Fertigungsverfahren
- Festlegung einer optimalen Geometrie
- Diskussion zum Preis-Leistungs-Verhältnis

Folie 4

Temperaturbelastung

Elektrische Beanspruchung

- Durchschlagsfestigkeit
- Oberflächenwiderstand
- Verlustfa

Folie 6

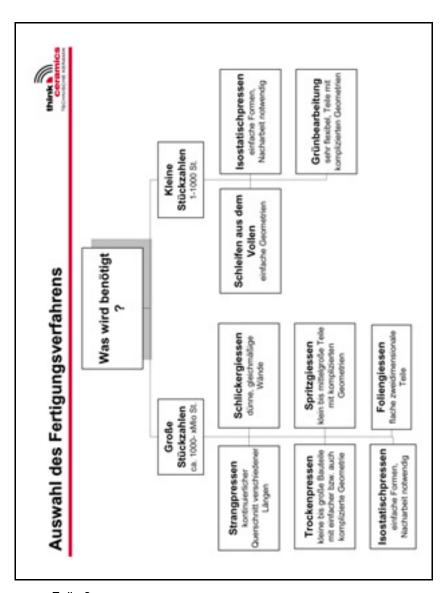
Mechanische Ansprüche

Dichte Tribologie Festigkeiten (Biege-, Zug-oder Druckfestigkeiten)

Härte

evtl. Lastwechsel

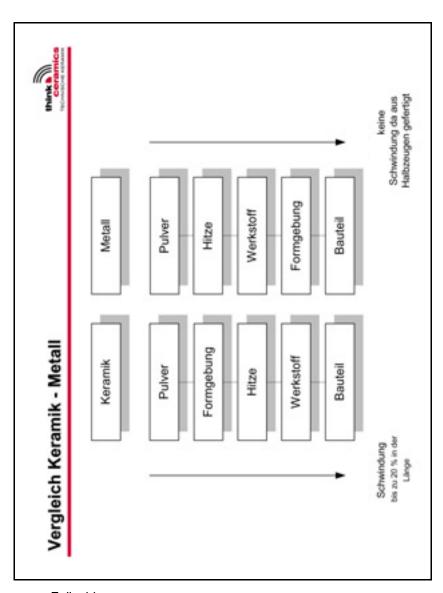
Folie 7



Chemische Umgebung

- Säure- bzw. Laugenbeständigkeit mit Ihren verschieden Variationen
- andere Umwelteinflüße wie z.B. UV-Beständigkeit

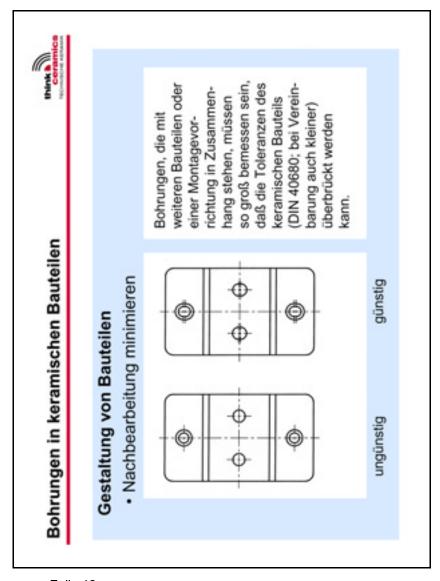
Folie 9

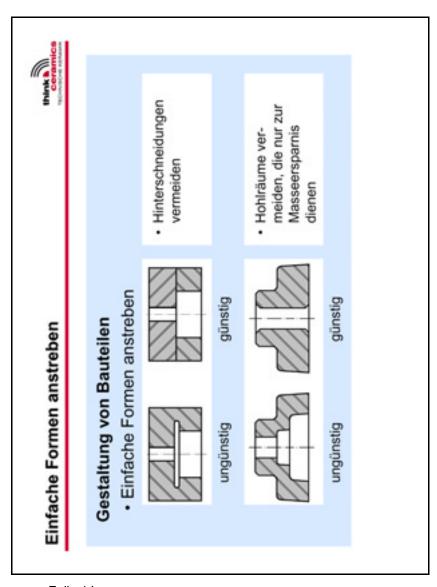

Nachbearbeitung

- Glasieren Metallisieren
- Hydrophobieren
- Beschichten mit anderen Werkstoffen Schleifen

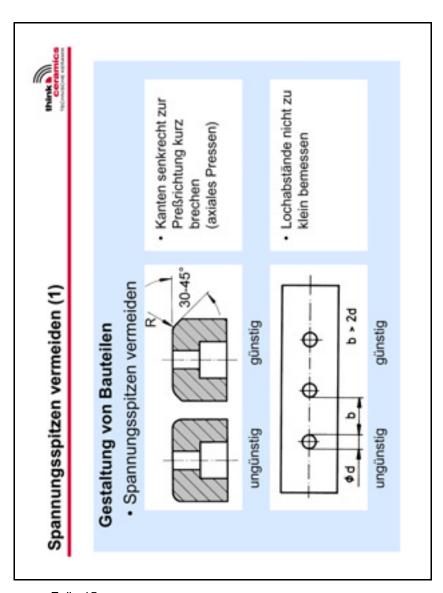
Läp

Folie 10

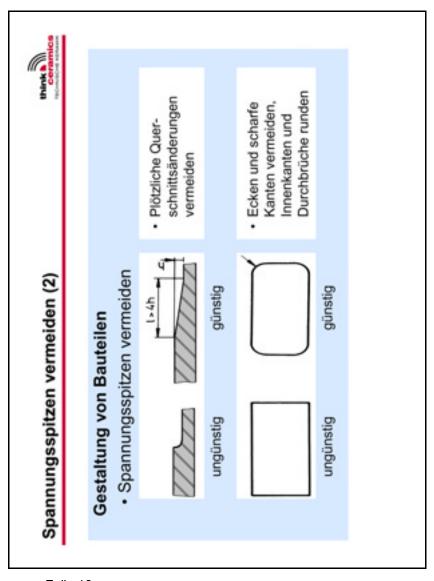

Folie 11


Grundregeln zur Formgebung

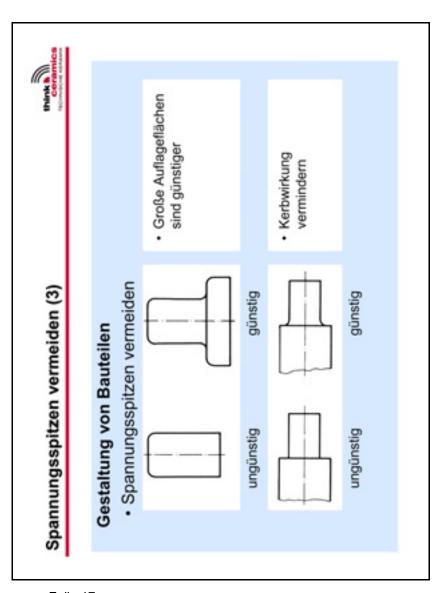
Folie 12



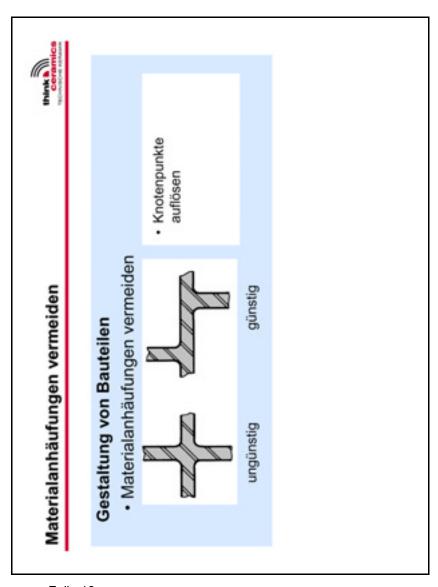
Folie 13



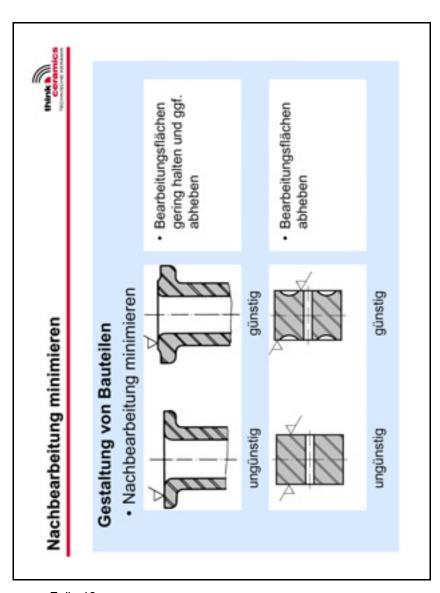
Folie 14



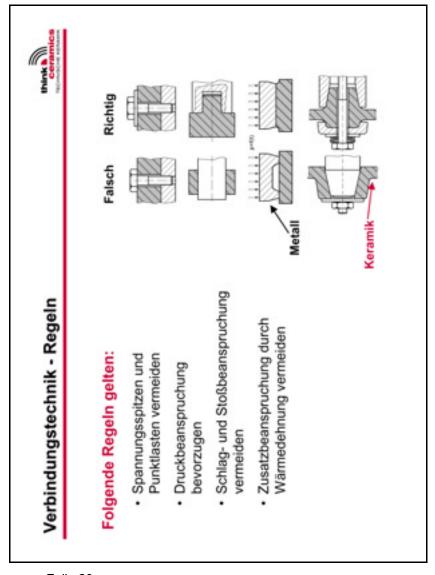
Folie 15



Folie 16



Folie 17



Folie 18

Folie 19

Folie 20